..

भौतिक गणित

पांडुलिपि जमा करें arrow_forward arrow_forward ..

Mathematical Modeling of Physical Systems from Theory to Practice

Abstract

Aouam Penko*

Mathematical modelling stands as a cornerstone of scientific inquiry, bridging theoretical concepts and real-world phenomena. By translating physical systems into mathematical language, models provide a structured way to understand, predict, and manipulate the behaviors of these systems. This journey from theory to practice involves abstract formulation, computational implementation, and empirical validation, creating a comprehensive framework that advances knowledge and technology. At its core, mathematical modeling begins with the abstraction of a physical system. This involves identifying the essential features and relationships within the system, while disregarding extraneous details. For instance, in classical mechanics, the motion of a projectile can be simplified by ignoring air resistance and assuming a uniform gravitational field. This simplification leads to the formulation of differential equations that describe the system's dynamics. Such equations capture the fundamental laws governing the system, providing a mathematical representation of physical principles like Newton's laws of motion.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

इस लेख का हिस्सा

में अनुक्रमित

arrow_upward arrow_upward