Lantonirina LS
Let Χ a diferentiable paracompact manifold. Under the hypothesis of a linear connection r with free torsion Τ on Χ, we are going to give more explicit the proofs done by Vey for constructing a Riemannian structure. We proposed three ways to reach our object. First, we give a sufficient and necessary condition on all of holonomy groups of the connection ∇ to obtain Riemannian structure. Next, in the analytic case of Χ, the existence of a quadratic positive definite form g on the tangent bundle ΤΧ such that it was invariant in the infinitesimal sense by the linear operators ∇k R, where R is the curvature of ∇, shows that the connection ∇ comes from a Riemannian structure. At last, for a simply connected manifold Χ, we give some conditions on the linear envelope of the curvature R to have a Riemannian structure
इस लेख का हिस्सा