Jie Yang, Kenneth Corscadden, Quan Sophia He and Claude Caldwell
Camelina sativa oil is considered a promising feedstock for biodiesel production. Response Surface Methodology (RSM) was used to optimize camelina biodiesel production by an alkali-catalyzed transesterification process. The effects of independent factors (temperature, time, molar ratio of methanol/oil, and catalyst concentration) on dependent variables (product yield and fatty acid methyl ester (FAME) yield), was investigated. Mathematical regression models were developed for prediction of the biodiesel product yield and FAME yield. The camelina biodiesel product yield (97%) and FAME yield (98.9%) were achieved at the optimal reaction conditions of 38.7°C reaction temperature, 40 min reaction time, 7.7 molar ratio of methanol/oil, and 1.5 wt.% catalyst concentration.
इस लेख का हिस्सा