Elham Nobari and S. Mohammad Hosseini
Generalized polar decomposition method (or briefly GPD method) has been introduced by Munthe-Kaas and Zanna [5] to approximate the matrix exponential. In this paper, we investigate the numerical stability of that method with respect to roundoff propagation. The numerical GPD method includes two parts: splitting of a matrix Z ∈ g, a Lie algebra of matrices and computing exp(Z)v for a vector v. We show that the former is stable provided that Z is not so large, while the latter is not stable in general except with some restrictions on the entries of the matrix Z and the vector v.
इस लेख का हिस्सा