..

सामान्यीकृत झूठ सिद्धांत और अनुप्रयोगों का जर्नल

पांडुलिपि जमा करें arrow_forward arrow_forward ..

On the structure of left and right F-, SM-, and E-quasigroups

Abstract

Victor SHCHERBACOV

It is proved that any left F-quasigroup is isomorphic to the direct product of a left F-quasigroup with a unique idempotent element and isotope of a special form of a left distributive quasigroup. The similar theorems are proved for right F-quasigroups, left and right SM- and E-quasigroups. Information on simple quasigroups from these quasigroup classes is given; for example, nite simple F-quasigroup is a simple group or a simple medial quasigroup. It is proved that any left F-quasigroup is isotopic to the direct product of a group and a left S-loop. Some properties of loop isotopes of F-quasigroups (including M-loops) are pointed out. A left special loop is an isotope of a left F-quasigroup if and only if this loop is isotopic to the direct product of a group and a left S-loop (this is an answer to Belousov \1a" problem). Any left E-quasigroup is isotopic to the direct product of an abelian group and a left S-loop (this is an answer to Kinyon-Phillips 2.8(1) problem). As corollary it is obtained that any left FESM-quasigroup is isotopic to the direct product of an abelian group and a left S-loop (this is an answer to Kinyon-Phillips 2.8(2) problem). New proofs of some known results on the structure of commutative Moufang loops are presented.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

इस लेख का हिस्सा

में अनुक्रमित

arrow_upward arrow_upward