..

सामान्यीकृत झूठ सिद्धांत और अनुप्रयोगों का जर्नल

पांडुलिपि जमा करें arrow_forward arrow_forward ..

Hom-algebra structures

Abstract

Abdenacer MAKHLOUF and Sergei D. SILVESTROV

Hom-algebra structures are given on linear spaces by multiplications twisted by linear maps. Hom-Lie algebras and general quasi-Hom-Lie and quasi-Lie algebras were introduced by Hartwig, Larsson and Silvestrov as algebras embracing Lie algebras, super and color Lie algebras and their quasi-deformations by twisted derivations. In this paper we introduce and study Hom-associative, Hom-Leibniz and Hom-Lie admissible algebraic structures generalizing associative, Leibniz and Lie admissible algebras. Also, we characterize flexible Hom-algebras and explain some connections and differences between Hom-Lie algebras and Santilli’s isotopies of associative and Lie algebras.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

इस लेख का हिस्सा

में अनुक्रमित

arrow_upward arrow_upward