..

रासायनिक विज्ञान जर्नल

पांडुलिपि जमा करें arrow_forward arrow_forward ..

Chemical Oscillations and Spatial Structures in Polymerisation Reactions

Abstract

Issa Katime, Juan A Pérez–Ortiz and Eduardo Mendizábal

This article discusses the possibility of coupling a polymerization reaction to an oscillatory kinetic model, complemented by diffusion which can lead to spatial structure. We used three well–known mathematical models of oscillators: a variant of the Rossler multivibrator, a model proposed by Edelstein, and the Oregon Oscillator. One or some of the terms in the equations of these models come from a polymerization reaction, while the other terms of these equations will come from collateral processes. So, almost any reaction could become oscillatory and/or with dissipative structure, adding the adequate collateral processes. The propagation stages are considered as invariants and initiation reactions of order α = 0, 1, or 2, and termination reactions of order β = 1 or 2 are assumed. Except in the case α = 1, β = 2, all six remaining reactions combinations (α, β) can be coupled to least one, and often to several of the models. The effects of destabilization a stable homogeneous steady state by the presence of diffusion is also discussed, which is always be possible.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

इस लेख का हिस्सा

जर्नल हाइलाइट्स

में अनुक्रमित

arrow_upward arrow_upward