..

सामान्यीकृत झूठ सिद्धांत और अनुप्रयोगों का जर्नल

पांडुलिपि जमा करें arrow_forward arrow_forward ..

A class of unitary irreducible representations of the Lie superalgebra osp(1|2n) 1

Abstract

Stijn LIEVENS, Nedialka I. STOILOVA and Joris Van der JEUGT

Using the equivalence of the defining relations of the orthosymplectic Lie superalgebra osp(1|2n) to the defining triple relations of n pairs of parabose operators b± i we construct a class of unitary irreducible (infinite-dimensional) lowest weight representations V (p) of osp(1|2n). We introduce an orthogonal basis of V (p) in terms of Gelfand-Zetlin patterns, where the subalgebra u(n) of osp(1|2n) plays a crucial role and we present explicit actions of the osp(1|2n) generators.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।

इस लेख का हिस्सा

में अनुक्रमित

arrow_upward arrow_upward