Ghazal T, Elkassas E and El-Masry MI
Nowadays, the power industry prefers using overhead lines instead of burying cables due to cost requirements. In spite of that, a problem lies in the fact that many of the existing older transmission systems are built with minimal or no consideration of dynamic effects. Moreover, demands require taller and more slender towers that may be subjected to heavier dynamic loads, and may undergo larger responses. Consequently, the study of the overhead power line failure and its consequences on the supporting towers is essential, especially when being located close to wind farms with risks of severe vibrations. This is a fact when considering the economic costs of failure of transmission lines, as well as the cascade failure that may happen to adjacent transmission towers. This research aims to study the effect of heavier wind loading on the response of the conductive cables and subsequently the lattice steel tower-cable system. This was achieved by creating a finite element model using computer software (ADINA) and (SAP2000). It is shown that many improvements can be made in current design methods promoting a reliability–based design procedure on designing the transmission line systems near wind farms.
इस लेख का हिस्सा